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ABSTRACT

This report describes an effective and mathematically rigorous finite process for

determining whether or not a given regular switching function is linearly separable,

and if it is, for deriving a minimal set of integral weights and threshold to realize

the function. The procedure uses the integral linear programming recently developed

by R. F. Gomery; the algorithm is described in detail, and a corresponding computer

program for implementing the technique can be obviously given without difficulty.1
As an illustrative example, a regular switching function of nine variables is worked

in detail. (The same function was studied earlier by D. G. Willis in disproving a

conjecture.)
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Section I

INTRODUCTION

The synthesis and minimization problem for linearly separable switching functions

is a fundamental problem in threshold logic. The problem is to determine whether

or not a given switching function is linearly separable and, if it is, to find the most

economic system of weights and threshold. In our previous reports (Refs. 1-7),

j various methods have been applied to solve this problem.

f For most of the threshold devices realizing linearly separable switching functions,

the weights and the threshold are required to be integers. However, the optimal

systems of weights and threshold obtained by the methods developed in the previous

reports may fail to be integral; in fact, D. G. Willis (Ref. 8) discovered a linearly

separable switching function of 9 variables of which

(2, 2, 3, 5, 5, 6.5, 6.5, 6.5, 9; 12)

is the only minimal system of weights and threshold. This disproves the conjecture

of Elgot and Muroga (Ref. 9), and Muroga, Toda and Takasu (Ref. 10), about the

existence of minimal weights which are all integers.

Because of this, it is desirable to find integral systems of weights and threshold that

are the most economic among a given linearly separable function F. This problem

will be referred to as the integral minimization problem. R. 0. Winder (Ref. 11)

proposed an approach and also mentioned several drawbacks. The problem remained

unsolved as Winder remarked in Ref. 11.

The objective of the present report is to develop an application of the integral linear

programming techniques introduced by R. E. Gomery (Ref. 12 and 13) to the integral

minimization problem for linearly separable switching functions.

1-1
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In the sections 2--4, we give an elementary exposition of Gomery's theory together

with a modified finiteness proof so that it holds for our integral minimization problem.

In section 5, we give an illustrative example which is used in the later part of the

report. In the sections 6-9, we formulate the synthesis and minimization problem

and then apply the method developed in sections 2-4 to solve the integral minimization

problem. The Willis example previously mentioned is used as an illustration, and a

minimal system of integral weights and threshold is computed by this process. The

result is

(2, 2, 3, 5, 6, 7, 7, 9; 12)

r
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Section 2

STANDARD LINEAR PROGRAMS

A standard linear program is to find nonnegative real numbers that minimize (or

maximize) a given linear function subject to a given system of linear inequalities.

Since a maximum problem is reduced to a minimum problem simply by multiplying

the given linear function with -1, we maay study the standard minimum program only.

For this purpose, let us consider a given linear function

q
a o + I ao, jt (1)

j=1

of q variables t1 .... tq, where ao, o, 1 .... aopq are given real numbers. On

the other hand, let

q

ai,° + I ati itj? 0 (2)
j=l

where i = 1, 2,...., p, be a given system of p inequalities in the same variables t1,

tq with given real coefficients ai, j and constant terms ai, o* Then, the standard

linear minimum program is the problem of finding nonnegative real numbers t1 ....

tq that minimize the given linear function (1) subject to the system (2) of p linear

inequalities.

Now, let y denote the given linear function (1) and let xi, (1=1, 2, .... p), denote

the linear function on the left side of the inequality (2). Consider y, x1 , ... , xp

also as variables. Then, the standard linear minimum program described above can

be restated as follows.

2-1
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Find the minimum value of the variable y subject to the following p + 1 linear

equations

q

y= a- L ao, jt (3)Y aojo

q
- a 0 + aji, j t (4)

j::

where I = 1, 2, .... p, and the condition that

x, 0, (i 1, 2,... p) (5)

t > 0, (j= 1, 2,..., q) (6)

Let A denote the p + 1 by q + 1 matrix

A 1I auij (7)

where 0 < i < p and 0 < j = q. The matrix A is said to be dually feasible in case the

q columns

oj = (aoj, ai j ... , j)

where j = 1, 2, ... , q, are lexicographically positive as defined in Ref. 7. In

particular, A is dually feasible if
ao, i >0, (j =1,2 ,... q)

If the matrix A is dually feasible, then our standard linear minimum program is also

said to be dually feasible.

Now, let us assume that our standard linear minimum program is dually feasible. Then,

the dual simplex method of C. E. Lemke (Ref. 14) as formulated in Ref. 7 can be applied

to obtain an optimal solution of the program or to prove the nonexistence of such.

2-2

LOCKHEED MISSILES & SPACE COMPANY



6-90-63-35

I
If our standard linear minimum prograam has an optimal so!utin, then, arter a finite

number of pivoting operations as described in Ref. 7, the dual-simplex method reduces

our given linear minimum program to the problem of finding the minimum value of the

variable y subject to the Following p + q # 1 linear equations

q

y b, o+ bo , uj (8)
S~j=1

q

x. = b 0 + I bi'j uJ (9)

where i = 1, 2,... p + q, and the condition that

x >0 , (1 = 1, 2, ... , p + q) (10)

Hlere, the symbols xi, (p < i < q), are used to denate the given nonbasic variables

t1 .... t with

tj = xp+j, (j = 1, 2, ... , q)

and the new nonbasic variables u1 , ... , Uq also appear on the left members of (9) as

q of the p+q variables x 1, .... Xp+q. Furthermore, the p +q+ 1 by q+ 1

matrix

(0 < i p + q, 0-$ j q), remains dually feasible and satisfies the condition

b 0, (l<i<p+q) (11)

Because of the condition (11), the trial solution

y =bo (12)

xi = bi, o, (i= 1, 2, ... ,p +q) (13)

is an optimal solution of our standard linear minimum program.

2-3
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Let v and B° denote the (p + q + 1) vectors

c° = (a0 ,0, al, 0 . a p o, 0, .... 0)

00 = (bo,0, b1 , o, b pyof bp+ 1 , o' ""' bp+q,o)

Then, by (33) of Ref. 7, /o is griater than o in the lexicographical order unless

the given matrix A satisfies the condition

ai,°=> 0 (lI p)= ) (14)

In case (14) is satisfied, then we may take a 0

'9-

I

!

I
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Section 3

INTEGRAL LINEAR PROGRAMMING

In many practical linear programs, the optimal solutions are required to be integers.

For example, in the classical transportation problem, if the commodity to be shipped

jis some indivisible good such as a number of automobiles, then the constraints and

function to be minimized are just as usual but only integral values of the variables are

admissible.

In 1958, R. E. Gomery (Refs. 12 and 13) introduced a general method for integral

solutions to linear programs. A simple exposition of Gomery's algorithm with some

slight improvement in the finiteness proof is given in this section. A numerical

illustrative example is worked out in the following section.

For this purpose, let us assume that the coefficients and constant terms

a i, j, (0<_i!=p, 0_•j<_q)

in (1) and (2) are integers. Then, the standard integral linear minimum program is

the problem of finding nonnegative integers t1 , ..... tq which minimize the linear

function (1) subject to the system (2) of linear inequalities.

Introducing new variables y, x1 , ..... xp as in the preceding section, we obtain an

equivalent problem of finding integers t 1 , .... tq which minimize the variable y

subject to the p + 1 linear equations (3) and (4) and the condition (5) and (6). Since

the numbers ai,j, (0 • I --p, 0 •-j S_ q), are ,ssumed to be integers, and since the

variables t 1 ,..., tq are required to be integers, it follows that the variables

y, xi, .... xp must also have integral values given by the equations (3) and (4).

Hence, our standard integral linear program reduces to the problem stated as follows:

3-1
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Find nonnegative integers y, x, ..... xp, ti ... 0 t which minimize y and

satisfy the p + 1 linear equations (3) and (4) in section 2.

Now, let us consider our problem as a usual standard linear program and assume

that it is dually feasible as defined in section 2. Hence, we can apply the dual-simplex

method to our program. The result is that either the equations (3) and (4) have no

nonnegative solution whatsoever or our program has an optimal solution that is not

necessarily integral.

If the equations (3) and (4) have no nonnegative solution, then our given standard

integral linear minimum program certainly has no optimal solution in integers. There-

fore, our problem is solved negatively in this case.

On the other hand, if our program has an optimal solution that is not necessarily

integral, then the dual-simplex method reduces the given program to the problem of

finding nonnegative integers

y, x1, .... Xp+q

which minimize y and satisfy the equations (8) and (9) as described in section 2.

If all of the p + q + 1 real numbers in the leading column

Po = (bo' o, b 'o, .. bp+q,o)

of the matrix B of the equations (8) and (9) are integers, then the trial solution (12)

and (13) is an optimal integral solution of our given program. Therefore, our problem

is solved affirmatively in this case.

In the remainder of this section, we shall consider the case in which not all of the

p + q + 1 numbers in the leading column P of the matrix B are integers. Then, !

3-2
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the trial solution (12) and (13) is an optimal solution of our given program, but

unfortunately it is not integral.

Choose the first entry b1, 0 In P° from top down which fails to be an integer; in

other words, let i0 denote the smallest nonnegative integer such that biot 0 is not

an integer. Consider the equation

q

x Xio= bi1o0  + I bio'j u (15)
J=l

where xi stands for y in case 10=0.
0

Let h0 denote the smallest integer not less than b iot o and, for each j = 1, 2,

q, let h denote the largest integer not greater than b . Let

ho0-b , 0(ifj = 0)

b I bio - hi (ifj = 1, 2,... q)

Then we have

h h0 - s, (if j = 0)

•h + st(if j= 1,2,...,.q)

with 0=5s < 1 for each j = 0, 1, 2, ... , q.

Substituting these values of b io,j into (15), we obtain

q q

x1 -ho- I h u1 = -S 0+ IsJui (16)
J=l j =1

3-3
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For any integral solution of our program, u1,. .,U and Xj are integers. On

the other hand, h0 , hI, ... , h are integers by definition. Hence, the left member

q

x p+q+1 x t - ho - I h iuj (17)

j=1

of the equation (16) must be an integer. Furthermore, since

q

o0< 1, 8 s u >0

the right member of (16) must be greater than -1. Thus, the integer Xp+q+ 1 is

nonnegative and we obtain an equation

q

Xp+q+1 -o + 1 uj (18)

j=1

Now, let us adjoin this additional equation (18) to the system (9) and let

-so, (ifj = 0)

p+q+1, J j, (iff = 1, 2, ... , q)

Thus, we obtain the following system of p + q + 1 linear equations

q

xq b ,0 + I b jui (19)
j=1

where

i = 1, 2, ... ,,p+q + 1.

3-4I
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By the construction of (18), we have proved that, for any nonnegative integral solution

(x1, ..... x p ) of the system (9), there exists a nonnegative integer xp kq+ 1 such

that (x1 ..... p+q' x p4q 1 ) is a nonnegative integral solution of (19). Conversely,

if (x1 , ... Xpq, xp q q + 1i is any nonnegative integral solution of (19), then

(x1 , ... X +q ) is clearly a nonnegative integral solution of the system (9).

Therefore, our standard integral linear program reduces to the problem of finding

nonmegative integers

y, x 1, ... , xp+q, Xpi q4,

j which minimize y and satisfy the p + q + 2 linear equations (8) and (19).

Since the system (8) and (9) is dually feasible and since s. -0 for each j = 1, 2,.!-
.... q, it follows that the system (8) and (19) is also dually feasible. On the other

hand, since b p+q+1,o = -So is negative, the trial solution of (8) and (19) is not

nonnegative. Thus, we can apply the dual-simplex method to this new system (8) and

(19). In fact, the first new nonbasic variable to be brought in is the variable

Xp+q+ 1'

The result of the dual-simplex method will either prove that (19) has no nonnegative

solution, or give an optimal solution of (8) and (19) that may fail to be integral.

If the system (19) has no nonnegative solution, then it certainly has no nonnegative

integral solution. It follows that the system (9) also has no nonnegative integer

solution. This solves our standard integral linear program negatively in this case.

On the other hand, if (8) and (19) have an optimal solution that is not necessarily

integral, then, after a finite number of pivoting operations, the dual-simplex method

3-5
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reduces (8) and (19) to the system of p + q + 2 linear equations

q

= + v (20)
J=1

q

xi = C, o + I c I, jv (21)

j=i

with i = 1, 2, ... , p + q + 1 and satisfying the condition

c1,o > 0, (11ip+q+ 1) (22)

Here, the new nonbasic variables v 1 ... , vq also appear on the left members of

(21) as q of the p+q+ 1 variables x1, ..... Xp+q+.

Let (3 and y 0 denote the (p+q+l) vectors

00 = (bo 'o, bl'o, ... bp +q,o0)

Yo = (c0 ,o, c, o .... cp+qo)

Then it follows from the dual feasibility and the dual-simplex method that y 0 p0o

in the lexicographical order.

Because of (22), the trial solution

o,= (23)

xi = c 1 ,0  (24)

I
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with i = 1, 2, .... p I q I 1, is an optimal solution of (8) and (19). Therefore, It

follows that

y oe0 (25)

xi c 1,0 ' ( 1, 2,... pp4 q) (26)

j is a feasible solution (8) and (9).

If Co0 o, Cl,° ..... C pfq,o are integers, then cp+q+i1,o is also an integer according

to the construction of the last equation in the system (19). In this case, the trial

solution (23) and (24) is an optimal integral solution of (8) and (19); hence (25) and (26)

is an optimal integral solution of (8) and (9). Thus, our standard integral linear

program is solved affirmatively.

It remains to study the case where not all of the numbers c 0 ,0 , c 1 ,° .... cp+q,°

are integers.

Choose the first entry ci, o in ° from top down which fails to be an integer; that

is, let io denote the smallest nonnegative integer such that c io 0 is not an integer.

Consider the equation

q
x ei \' c . (27)

xio = 0 I', 0 (27)
jl

where x stands for y in case i 0.
0

Now, we can iterate our operation on (27) and the system (20) and (21) exactly as we

did on (15) and the system (8) and (9).

In the next section, we prove that the process stops after a finite number of iterations

provided that either of two mild conditions holds. The final result is that either the

given program has no integral feasible solution or this process gives an optimal

integral solution in a finite number of iterations.

3-7

LOCKHEED MISSILES & SPACE COMPANY



6-90-63-35

Section 4

FINITENESS PROOF

Throughout the present section, we shall assume that at least one of the following

two conditions (A) and (B) is satisfied:

(A) The nonnegative solutions of the system (2) of p inequalities form

a bounded set S of the q-dimensional Euclidean space R

(B) The system (2) has a nonnegative solution in integers, and the

coefficients, ao 1, * ... ,. ao q in (1) are all positive, that is,

aoj > 0, (J 1 ... , q)

Under this additional assumption, we can prove that the process which is described

in the preceding section must stop after a finite number of iterations.

For this purpose, let us assume the contrary and deduce the following contradiction.

(Then the iterative process in the preceding section would apply infinitely many times.)

Let k _->0 be any nonnegative integer. After the kth iteration of the process, our

given standard integral linear program reduces to the problem of finding nonnegative

integers

y, x1 , ... Xp+q+k

which minimize y and satisfy the system

q
y= d(k) + Pd ) w(k) (28)

O,0 0,o j
j=1

q

xi = d(k) + d(k) w(k) (29)

j=1

4-1
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with 1 = 1, 2, .... p + q + k and satisfying the condition

d Žk) >0, (1 i1p+q +k) (30)
i,O

Hcrc, the iunibasiv variables w• . w*.. also appear on the left members of

(29) as q of the p + q + k variables x1, .... Xp+q+k Note that (28) and (29)

reduce to (8) and (9) when k = 0 and to (20) and (21) when k = 1.

Let 60(k) denote the (p + q + 1) vector

6k)= (A~), d ... d~c
0 0,0 1,0' p+q,o

Then it follows from the dual feasibility and the dual-simplex method that

6(k1) ý 6(k (31)
o 0

in the lexicographical order for every k Ž 1.

In particular, (31) implies

A-) <_ d(k) (32)
0,0. - 0,0

for every k _1. In other words, the infinite sequence

d(), d(l) d(k) (33)
0,0 0,0 ' 0,0'

is monotone nondecreasing.

Next, we can prove that, under our additional assumption made at the beginning of this

section, the infinite sequence (33) of real numbers is bounded above. I
I

4-2
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In fact, if the condition (A) is satisfied, then the continuous function (1) is bounded

for all feasible solutions of (2). Since d(k) is the value of (1) for the feasible
OO

solution

tj "pp+j p+J,o

where j = 1, 2, ... , q, the sequence (33) is bounded.

On the other hand, if the condition (B) is satisfied, then the system (2) has a non-

negative integral solution

tj = Ti, (j = 1,2,...,q)

and the linear function (1) has the number

q
17 = ao + I a o' 'ao, oo,J 3

J=1

as its value for this solution of (2). Since the coefficients ait j are assumed to be

integral, it follows that

q
y = ao, 0 + 'o'

j=1

q

x, = = a,,o + a , Tj

where 1 = 1, 2, ... , p is an integral feasible solution of (3) and (4). Let

p+j T= (j = 1, 2, .... , q)

then y = ), xi= i (i = 1,2 ...2, p+q) is an integral feasible solution of (8) and (9).

4-3
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By the construction of the iterative process in the preceding section, there exists a

nonnegative integer 4p +q4 k for each k 1 such that

Y = • x i = i( 1, 2 . .., p + q + k)

is a feasible solution of (28) and (29). Since

y = d (k) = do) (i = 1, 2, . + p+q +k)
0,0 1 i , 0

is an optimal solution of (28) and (29), we have

d (k) < t
0,0O

Hence the sequence (33) is bounded above in this case.

Thus, we have proved that the sequence (33) is bounded above provided that at least

one of the two conditions (A) and (B) holds.

As a nondecreasing sequence which is bounded above, the sequence (33) converges to

its least upper bound eo, in symbols

Lim d(k) = e (34)
k-0 0,0 0

Let h0 denote the smallest integer not less than eo, then we have

-e<1eo ý ho ho 0- eo 0

By (34), there exists a nonnegative integer k0 such that

s = h -d 0 < 1
0 0 0,0

4-4

LOCKHEED MISSILES & SPACE COMPANY



6-90-63-35

!
On the other hand, since e is the least upper bound of the sequence (33), we have

s = h -do) > O

0 0 0,0

If s 0. thenwph vp

rU
d(ko) = e = h

0,0 0

Hence e° = h is an integer and

A) = e =h, (k>ko) (35)
0,0 0 0

Otherwise, if so > 0, then

AOk)= h s0,0 0 0

is not an integer. According to the rule of choosing an equation in the iterative

process, the equation (28) is to be chosen to construct the new equation

q
Xp+q+k +18= - j (ko) (36)

where

= A) - h., (j = 1, 2,... q)
o ,J j'

with h standing for the largest integer not greater than d0)
i otj

Adjoin the equation (36) to the system (28) and (29) with k = k and apply the dual-

simplex method to the system (28), (29), and (36). By assumption, we will obtain an

optimal solution given by the vector 6 ((k- + 1) Since -s 0 is the only negative
00

constant term in the system (28), (29), and (36), the first pivoting in the dual-simplex

4-5
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method is to replace one of the nonbasic variables w ... , w(kO) by the new1' q
variable xp+q +ko+ 1" If, according to the rule of the dual-simplex method, the

variable wO), is selected to be replaced by Xp+q+k+ 1, then equations (28), (29),

and (36) will be transformed into the form-

q

y = f0 ,0 + I fo, Jzi (37)
oj =jj=1

q

x, = f 'o + fI, f ZJ (38)
Jl

with i =1, 2,..., p+q+ko0+ 1, where the new nonbasic variables zI.... zq
are given by

ix (if i J01)

xp+q+k 0 +l' (+f = JO)

According to the pivoting process of the dual-simplex method, we have

f SdO) +oAO dk) 39)
0,0 0,0 a o,0 (J39

Because of the dual feasibility of the system (28) and (29), dAo) > 0 and henceo,JO

s < dO) Therefore, (39) implies that
Jo- oJo

fo, o 1 Ad~k) + so = ho"

4-6
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On the other hand, since

f < d(k) e <h, (k> k)
0,0= O,0= 0= 0 0

it follows that

f dk =e° = ho, (k>ko)
0,0 0,0 0 0

jThus, we have proved that the limit e is an integer and that there exists an integer

k such that

Sd(k) = eo (k > ko

0,0 0

Now, let us consider those vectors 5(k) with k > k . Since0 0

6 (k 6 (k+l) = d (k + 1)0 ) = 0o o'o 0 ,0

for every k > ko, we have

(k+1) (40)
1,0 = 1, 0

for every k > k . In other words, the infinite sequence

d(ko + ) (ko + 2 ) d(k) (41)
1,0 1 1,0 .. ' .1,0(.41

is monotone nondecreasing.

We will prove that, under our additional assumption made at the beginning of this

section, the sequence (41) is bounded.

4-7
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if the condition (A) is satisfied, then the continuous function

q

x = a 1 , 0 + I a,, t (42)
1,1 1

(k)

is bounded for all feasible solutions of (2). Since d(k) is the value of (42) for the1,0

feasible solution

t= d(k)

j p+j p+J,o

where j = 1, 2,..., q, the sequence (41) is bounded.

On the other hand, if the condition (B) is satisfied, then we have

aoj > 0, (J =1,2, ... q)

For each k>ko, we have

q

e = d(k) = a + a d(kl0 o'o 0a,0 o ' ao p+J,o
j=l

This implies that

d(k) (e -a )/ao, j

p+j,o 0 e-a,0

I
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for every j = 1, 2 q and therefore

q

0 < d(k) < a,. 0 (,0 - a., 0)/a= 1. 0 = I 0'J

for every k > k 0 . Hence the sequence (41) is bounded.

Thus, we have proved that the sequence (41) is bounded when at least one of the two

conditions (A) and (B) holds.

As a nondecreasing bounded sequence, (41) converges to its least upper bound el,

in symbols

Lim d(k) = e (43)
k- co 110 1

Let h I denote the smallest integer not less than el, then we have
0

e 1 :S hol, hol - el < 1

By (43), there exists a nonnegative integer k 1 > k 0 such that

s' = h' - d (kj) < 1
o 0 1,0

Ontheotherhand, since e 1 is the least upper bound of the sequence (41), we have

s' = h' - d(kl) > 0
0 0 110

ff a 0, thenwehave

(k
d 1.0 = e I = hol
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Hence e1  ho is an integer and
0

d(k) = e h (k > (44)

1,0 1 k k()

Otherwise, if s5 > 0, then0

d(kl) = h' -a'

1,0 0 0

is not an integer. Since

d~1) = e =h
0,0 0

is an integer, it follows from the rule of choosing an equation in the Iterative

process that the equation

q
X = d(kl)+ d(kl) w(k1)

j=1

is to be chosen to construct the new equation

q

XP~ 1=i-s + siw(k) (45)x p+q+k 1+ I o,
J=1

where

s= d1) - hi, (j = 1, 2,..., q)
j 1, j

with h' standing for the largest integer not greater than d, '1)
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I
Next we adjoin the equation (45) to the system (28) and (29) with k = k1 and apply

the dual-simplex method to the system (28), (29), and (45). By assumption, we can

obtain an optimal solution given by the vector (k,4 1) Since -s' is the only
0 0

negative constant term in the system (28), (29), and (45), the first pivoting in the

duni-simplex method is to replace one of the nonbasic variables w,,1 ,.. . , (kl)

by the new varable Xp+q +kl+ 1 • If, according to the rule of the dual-simplexmethod, the variable w'kl) is selected to be replaced by xp~q kl+l1 then the

j equations (28), (29), and (45) will be transformed into the form (37) and (38) with

i = 1, 2,..., p+q+k1 ÷ 1, where the new nonbasic variables z1 z... q are

given by

j ) (ifj i jo)

zj = Xp+q~kl+l' (ifj i jo)

By the pivoting process, we have

s'

f l) + .o d(k1) (46)
0,0 0,0 s! O,j(

On the other hand, we have

d(kl) < f < d(kl1) = dkl) (47)
0,0 0,0 - 0,0 0,0

Since so J 0, (46) and (47) imply

d(kl) = 0 (48)
0, j0
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Because of the dual feasibility, (48) implies

A1l) > 0 (49)1, J

This fact (49) implies

s' d Al) (50)jo <= l'o

Then, by the pivoting process, we have

f Adi) +.-! dAl)
1,0 1,0 s I1 I

io0

d(kl) + a' =h'
1,0 0 0

because of (50). On the other hand, since

fl,0 o=s1A) < el< h (k > j
- 1,0 1= 0

it follows that

f =dk = eI = h' (k >
1,0 1,0 ok)

Thus, we have proved that the limit e1 of (43) is an integer and that there exists an

integer k1 > k 0 such that

d(k) = ell (k > k1 ) )

f
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We can now repeat the same argument given above for i = 2, 3 .... p + q or

apply the mathematical induction. Hence, for every i = 0, 1 ... , p + q , the

sequence

d(0) d d! d(k)

i,o' io ' i,o

converges to a limit

Lim d(k) = e
k-co i,o 1

where eI is an integer; furthermore, there exists an integer kI such that

d(k) = ei (k > k

1,o0

Finally, let k be a finite integer such that

k > k, (i =0, 1 ... p+q)

Then it follows that

y d d(k) e
0,0 0

x d(k) =ei (i= 1, 2,...,p +q)
1 1,0

is an integral optimal solution and the process terminates after k iterations. This

completes the finiteness proof.

I
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Section 5

AN ILLUSTRATIVE EXAMPLE

In this section, we shall study the standard integral minimum program of finding

nonnegative integers

ti, t 2 , t 3 , t 4 , t5 , t 6 , t7 , t8 , t 9 , tlo

which minimize a given linear function

y - t1 + t 2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t l

subject to a system of 20 linear inequalities:

t10 - t3 - t9 0

tl0 - t5 - t8 - 0
t10 - 12 - t3 - t8 _0

t -t -t4 - t5 >0

t 10 - I - 2 - 3 5 _0

t4 + t -t >1 0

t16 + t 47 - 10 1 _ 0

tI1 + t 2 + t 9 - tl0 1 - 0

t 1 + t4 + t - t10 t1 0

t3 + t4 + t5 -tl0 -1 _ 0

tI + t2 + t 3 + t 16 - 10  - > 0
ti t + t4 + t5 - t1 0 - 1 >ff 0

t + t + t + t -t -1>0
1 2 4 6 10
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t - tI >0
t3 - 2 > 0

t-t3 >0

3 4t-t4 >0

tb 4•

t6 -t5 > 0
t7 - 6 > 0
t8-t7 >0

t 8 - t 7 1 0

t 9  t8 > 0

Next, we introduce slack variables xi, (1 < I < 20), for the left members of these

inequalities. Thus, the given problem is reduced to that of finding nonnegative integers

y, x,, and t , which minimize y subject to the following twenty-one equations:

y x 1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10

x1 1 10 - 3 - 9

x2  t1 0 -t 5 - t 8

x 3 tl0 - t2 - t3 - t8

x 4 = t10 - t2 - t4 - t5

x5 =t 1 0 -t 1 -t 2 -t 3 -t 5

x 6 = t4 + t 9 - t10 -1

x7 = t6 + t7 -t 10 -1

x8 = t1 + t2 + t9 tl0 - 1

x9 =t + t4 + t6 - t0 -1

X10 = 3 + t4 + t5 - t10 1

Xll t1 + t 2 + t3 + t 6 -t 1 0 -1
x12 = 1 + t2 + t4 + t - 1
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X t13 = 2 -tI

x = t3 -t2

x15 = 4 - 3

x 1 6 = t5 -4t

x17 = t6 - 5

x18 = t7 - 6
x t19 = 8 -t7

x2 0  t9 t 8

Since all coefficients of the linear function y are positive, the problem is dually
feasible; hence, we can apply the dual-simplex method and write

x = t, (1 < j < 10)

Then we can write the initial tableau T
0

For definiteness, we choose the first variable with a negative constant term as the

new nonbasic variable in each pivoting operation.

After twelve pivoting operations, we obtain a nonintegral optimal solution.

The thirteen tableaux of these operations are given as follows. The pivot element

in each tableau is circled.
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T a b le a u T O

tI t 2  t3  t 4  t 5  t6 t7 t8 t 9  t 1 0

Y 
1 1 1 1 1 1 1 1 1 1

xI 
-1 I1- 

-1 1

_ 1x -1 1

x3-1 

-1 
_1

x 3__ 
_

x4-1 

-1 -1 

I__ 

_ _ _ _

x5  -1 -1 -1 
-1 

1

x6 -1 

1_ 

_ _ _ 
_ _ __ __ __ _-1_ 

_

x? -1 _ _ _ _ _ 

1 1 
-1

x 4__ 1 -

x 8 - 1 1 1 1 - 1

x9 -1 1 __ _ _1 

1 _ _ _ _ _ -1

xlO -1 __ _ _1 

1 1 
_ _ _ _ _ -1

Xll -1 1 1 1 __ _ _1 

__ _ _-1

x 2 -1 1 1 
1 1 

-1
x13 

-1 1
x1 

-1 
1

x9

x1 
-1 1

x 1

x 1 6  

-1 1
x1 7  

-1 1

x 18  

1 
1

x 19  

-1 1

x 2 0  

-1 1x2 1  

1x2 2  

1
x23 

1

x2 4

x2 7 

17

x2 6  

1i

x 2181

x 2 9  

5
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Tableau T 1

c t1 t2 t3 t4 t 5  t6  t7  t 8  x6  t 1 0

Y 1 1 1 1 __ 1 1 1 1 11 2
Xl -I 

- _ _ 

-I_ 
_ __

y 2  

-1 -1 1
x3  

-1 -1 
___ 

______ -1 1
x4  

-1 ____ -1 -1 _______ 
___1

x5  -1 -1 -1 -1 

1

x6  

1
S7 

-1 
_ _ _ _ _ _ _ 

_ _ _ 1 1 _ _ _ _- 1
x8  1 1 __-1 

________1

I 
9 -I 1 

I_ 
_ 

_ 1 _ _ _ _- 
I

xlO -1 _ _ _ _ _ 1 1 1 __ _ _ _ _ _ _ _ _-1

" l i -1 1 1 1 
_ _ _ _ 1 _ _ _ _ _ - 1

x 2 -1 1 1 
1 1 _ _ _ _ _ _ _-1

x13 -1 1 ______ 
______

x4

x1 5  
___ -1 1 ________

x5

x1 6  ______-1 

1 __

x 17 6-1 

1x18 ___ __ ______-1 

1 _ _

x19  _______________-1 

1

x 20__ 1 __ _ _ _ _-1 

I _ _ 

-1 1 1
__21_ 1 __ __ ___x2 2  ____1 

__ 
___

x 

8x 2 4  

1

x 25  

1

x2 6  

1

x 27  

1

x 2 8  

1

x1 

-1 

1 1

K 
16

x 320 1
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Tableau T2

c tI t2 t3  x 1  ti5 t6 t7 t8 x6 tO

Y 1 1 1 1 1 1 1 1 2

"2-1 -1 1

Xl

xl 1

x -14

x3 

-I -I 

--

1 -x4__ -1 I _ _ -1 -1 -1 -1 
-1 T

x5  -1 -.1 -1 -1 

1x6  
1

x7___ -1 

I___ 1 
-1x9 -1 

1 1 -1 
-1 _ _ _

x 8 
1-1 

1 1 -1 
-1

lO2 
1 1 

1 -1

x6

X l -1 1 1 1 
1 

-1
x1 2  1 1 1 1 1 1 -1x1

x13 -1 1I_ 
_x 1

x 1 4  

-1x___ 1115

x -1 -1 -1 1 -1

x1 7  -1 1

x 18  -1 1

x 19  -1
x2 0  -1 -1 -1 1
x 2 1 -x 2 2 1

x24

x 251

x 2 6  1

x2 7  1

x28

x2 9  

-1 -1 

1~

r

x 
19
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Tableau T3

c tI t2 t3 '1 t5 t 6 t7 t8 x6 x4

Y 3 1 3 3 2 3 1 1 1 3 2

xl 1

""2 _ 1 1 1 -1 1 1

X31 1 1 -1 1 1

x4  1
x5 1 -1 

1 
1 1

x6  1

j 7 -2 -1 -1 -1 -1 1 -1 -1x8 -1 1 1 -1 -1I___ 
_______-1l1 -1 -1 1 
___ 

___ -1

x8

X ll -2 1 -1 -1 1 -1 -1

x 12 -1 2-1

x 
-1x 14  1 1 1

x 15

11 4_- 
I1

x1 -1 
__ _ _ -1 -1 1 __ _ _ _ _ _ _ _ _ -1x 1

x 1 7  -1 1x1 8  ___ 
______ 

___-1 1

x 19  -1 1
x 20 1 1 1 -1 1 1

x2 1  1
x 22  1

x 24 1 1 1 1

x 25  1

x2 6  1

x 2 7  1

x2 8  1

x2 9  1 1 1 1 1

x30 1 1 1 1 1 1 1
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Tableau T4

c tI t2 t3 x1 t5 t6 x7 t8 x6 x4

Y 5 1 4 4 3 4 1 1 4 3
_2_1 

1_1_1-11 

1

X l I

x 3 
1 

- 1 1 1

x 4 3

x5 1 -1 
1 __ _ _1 

1
x6  

1
x7  

1x9 -1 1 -1 
-1 

1-
x 8- 1 1 -1 -1- 11-x -1

x10 -1 -1 1 
-1

X -2 1 -1 -1 1 -1 -1

x12  -1 1 -1

x13 
-1x 1 4  -

xi1s 111
-11-1 

1I1 
-

x1 7  
-1x18 2 1 1 1 1 -2 1 1 1

x 19 -2 -1 -1 -1 -1 1 -1 1 -1 -1

x1 1 1 -1 1 1

x21 1

x2 2

x 2

x24 1 1 1 1

x25 1

x 26

x27 2 1 1 1 1 -1 1 1 1

x28 1

x29 1 1 1 1 1

30 1 1 1 1 1 1 1
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Tableau T5

c x 8  t2 t3 x, t5 t6 x7 t8 x6 x4

Y 6 1 3 5 4 41 4 3
"___ 2_ 1___ __ _ 1 1 1 

-1 I 1x 3 1_ 
_ _ _ _ 1 1 _ _ _ _ _ -1 1 1

x 4 2

x5  -1 1 -1 
1 1

x6  

1j 
_ _7_ _ 1

x91 
_2 

_ -
_-

x 

8
x 9  1 -2 1 1 -1 1 _ _ _ _-

xlO -1 I1 I Q 
__ ___ 

_ _ _ _ -1Xl: -1 1 -1 1 -1 1 -1 -1
x12  1 -1 1 1 -1 

-1

x13 -1 -1 2 -1 -1
x 1 4  -1 1

x15 1 1 1

x16 -1 -1 -1 1 -1

xx1 7  _______ 

___-1 

1 
___

x18 2 1 1 1 1 -2 1 1 1

x19 -2 -1 -1 -1 -1 1 -1 1 -1 -1

x 20 1 1 1 -1 1 1
x1 1 -1 1 1

x 2 2  1
x 2 3  _-

x1 1 1 41

x 2 5  1
x 2 6

x27 2 1 1 1 1 -1 1 1 1

x28 1
29 1 1 1 1 1

30 1 1 1 1 1 1 1
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Tableau T6

C X t x x t t x t x

c 8 t2 10 1 t5 t6 x7 t8 6 x4

Y 11 1 8 5 4 4 1 1 4 8
xl 1

x2 2 2 1 1 -1 1 2x3 1 
1 1 -1 1 1x4  

1x5 -1 -1 -1 
(__)

x6  

1
x7  

1
x 6

x91 1 -1 1 1 -1 1
x l O

x 1 0 1
Xll ____ 1 1 -1 1 -1

x 11

x12__ 1 1 1 1

x13 -2 -1 1 -1 -1 -1x14 1 1 
1

x15 1 1 1x 1 6 -2 - 1 - 1 -
1 -

x17  -1 1

x18 3 2 1 1 1 -2 1 1 2xx1 9  -3 -2 -1 -1 -1 1 -1 1 -1 -2

x20 1 1 1 -1 1 1

x21 2 1 1 1 - -
x23 1 1 1 1 1
x2 2

x 24 2 1 1 1 1 1

-1 1 1 2
x2-

x27 3 2 1 1 1 -1 1 1 2x 281
x 291111 

1
x3 0 2 2 1 1 1 1 2
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Tableau T7

c x8 t2  Xl0 x1 t5 t6 x7 t8 x5 x4

Y 15 5 8 9 4 4 1 1 4 8
X 1

x2 3 1 2 2 1 -1 1 2

x3 2 1 1 1 1 -1 1 1

X 1
X5 5

-x8x9 1 1 
1|_ _l -

-1 (_ _ 1-1
x 11

x 12x 13 ,,, -2 _ -1 1 -1 -1_- 
1

x 
1 

_ 

_

x is 2 1 
1 1 

1

x 16 -3 -1 -1 -2 -1 1-1

x 17  
-1 1

x18 4 1 2 2 1 1 -2 1 1 2

x 1 9  -4 -1 -2 -2 -1 -1 1 -1 1 -1 -2

x20 2 1 1 1 1 -1 1 1

x21 2 1 1 1 1x 2 32  1 1 

1__ _ _x 22

x24 3 1 1 2 1 
1 1

x 2 5  1

x 2 6

x 2 7  4 1 2 2 1 1 -1 1 1 2

x29 2 1 1 1 1 1 1

x30 3 1 2 2 1 1 1 2
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Tableau T8

c x8 t2 X10 xI t5 X11 x7 t8 x5 x4'

Y 15 5 8 9 4 4 1 1 4 81
- - - -- a

"X2 3 1 2 2 1 -1 1 2

x 3 2 1 1 1 1 -1 1 1x__ __1

"x5 1

"x7 6 1

x7x 8 1

x9  2 -1 1 1 1 1
xlI
Xl0

x 12 1 1 1

"x13 -2 -1 ( -1 -1 -1

"x14 1 1 1

x15 2 1 1 1 1
x16 -3 -1 -1 -2 -1 1 -1 -1
"x17 1 1 1

"x18 2 1 2 2 1 -1 -2 1 -1 2

x19 -3 -1 -2 -2 -1 1 -1 1 -2

"x20 2 1 1 1 1 -1 1 1

"x21 2 1 1 1 1 j
x 221

x23 1 1 1 _1I

"x24 3 1 1 2 1 1
"x25 -1 1

"x26 1 1 1 1
"x27 3 1 2 2 1 -1 1 2 Ix28

x29 2 1 1 1 1 1 1

"x30 3 1 2 2 1 1 1 21
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Tableau T 9

c 8 x13  X o xI t1 5 X11 x7 t8 x5 x4

Y 31 13 8 17 12 4 1 1 4 16

x1 1

x0 7 3 2 4 3 -I 1 4
x3 2 1 1 1 1 -1 1 1

x4  1
x5  1x6 1 1 1 ______ 

__ 1x7  1
xx9  ______-1 

__ 
1 

1 -1

x 81

xl 1Xl 11

x12__ 1 1 ____ 1 1 ___ ___ ___x14 1 1 
1

x 131

x15 2 1 1 1 1x16 -5 -2 -1 -3 -2 n _ -1 -2

x 17 1 1 1

x18 6 3 2 4 3 -1 -2 1 -1 4
xx1 9  -7 -3 -2 -4 -3 1 -1 1 -4

x20 4 2 1 2 1 1 -1 1 2

x 21 2 1 1 1 1

x 2 1 1 1 1 1

x23 3 1 1 _ 2 .2

x24 5 2 1 3 1 1 2
x2 5 26 1 126 1 

1 1 1

x2 7  7 3 2 4 3 -1 1 4

x29 4 2 1 2 1 1 
1 2

x30 7 2 2 4 3 1 - - 4
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Tableau T10I

C x8 x 1 3  x1 0  x1 x16 X11 x7 t8 x5 4

Y 51 21 12 29 20 4 1 1 8 24
x I1 

1

x9 7 3 7, 4 3 -4 1 4
x 3 7 3 1 4 3 1 -1 2 3
x4  1
x5  1x6___ 1 1 _ __ 1 ____ ___ 1 1
x7

x8  1
x9  -1 1 1 -1

x l O 1

x12 1 1 1 1

x 13

x1 1 1
x2 1 1

x la 1
x 1 

1 1
x18 1 1 1 1 1 -1 -2 1 -2 2
x19 -7 -3 -2 -4 -3 ni -1 1 -4

x 2 0  9 4 2 5 3 1 -1 2 4

x 21 2 1 1 1 1
x_22 2 1 1 1 1x 23 3 1 1 2 1 

2

x 24 5 2 1 3 1 1 2

x25 5 2 1 3 3 1 1 2

x26 6 2 1 3 2 1 1 2 2

x27 7 3 2 4 3 -1 1 4ii ±x2829 9 4 2 5 3 1 
2 4 _

ý30 12 5 3 7 5 1 2 6 f
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Tableau T11

c x8 X13 X10 x1 x16 x19 x7 t8 x5 x4

y 51 21 12 29 20 4 1 1 8 24

x1 1

x9 7 3 2 4 3 -1 1 4

X3 7 3 1 4 3 1 -1 2 3

x4 1

x5  1
X6__ _ 1 1 1 1 1 1

x 6x x7
x8

x 9 1 7 3 1 4 3 1 1 -1 1 3x 10 1
X l l 7 3 2 4 3 1 1 -1 4

x12 1 1 1 1

x13 1
x14 1 1 1 1

x15 2 1 1 1x s 11

x17 8 3 2 4 3 1 1 -1 1 4

x18 -13 -5 -3 -7 -5 -1 -2 -1 20 -2 -6
x 19  1

x 2 0  9 4 2 5 3 1 -1 2 4

x 21 2 1 1 1 1

x22 2 1 1 1 1 1

x23 3 1 1 2 1 2
x 2 4  5 2 1 3 1 1 2

x 2 5  5 2 1 3 3 1 1 2

x 26 13 5 3 7 5 1 1 1 -1 2 6

x 27 -1 1

x 28 1

Ix29 9 4 2 5 3 1 2 4

530 2 j 3 7 5 1 2 6
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Tableau T 1 2

c x8 x13 X10 x1 x16 x19 x7 x18 x5 N

y 57.5 23.5 13.5 32.5 22.5 4.5 1 1.5 .5 9

x 1 1
x, 5 .5 .5 .5 -1 -. 5 -. 5

x .5 .5 -. 5 .5 .5 .5 -1 -. 5 -. 5 1

x4  1
x 5  1

x 6 1 1 1 1 1 1
x 7

x8  1x .5 .5 -.5 .5 .5 -.5 .5 -.5
x 0 1
xl .5 .5 .5 .5 .5 -. 5 .5 -. 5 -1 1
x12 1 1 1 1
x 1

x14 1 1 1 1

x 2 1 1 1

x 161

x_17 1.5 .5 .5 .5 .5 -. 5 .5 -. 5 1

x 1

x 19  1

x20 2.5 1.5 .5 1.5 .5 .5 -1 -. 5 -. 5 1 1

x21 2 1 1 1 1

x 22 2 1 1 1 1 1x 23 3 1 1 2 1 2 IP

x24  5 2 1 3 1 1 2
x25 5 2 1 3 3 1 1 2 1
x2 6  6.5 2.5. 1,5 3.5 2.5 .5 .5 -. 5 1 3
x27 6.5 2.5 1.5 3.5 2.5 .5 .5 .5 1 3
x28 6.5 2.5 1.5 3.5 2.5 .5 1 .5 .5 1 3
x 29  9 4 2 5 3 1 2 4

XN 12 5 3 7 2 6
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Since the constant column in T12 is nonnegative, we obtain an optimal solution

t I=x =21t1 =21=2

t 2 =x 2 2 =2

t = x = 3

t4 - 24 5

t5 x 25 5

t 6 = x2 6 = 6.5

t 7 = x2 7 = 6.5

t 8 = x 2 8 = 6.5

t9 = x 29 = 9
t = x = 12

t10  x 3 0 =1

The minimum of the linear function

10

y= >tj
j=l

for all feasible solutions is 57. 5. This optimal solution is not integral; in fact, it is

obvious that no integral feasible solution can give y the nonintegral value 57. 5.

To find an integral optimal solution for our problem, let us apply the process

described in section 3.
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I
Since the leading element 57.5 in the constant column is nonintegral, we choose the

equation

y = 57.5 + 23. 5x 8 + 13. 5x 13 + 32.5 x1 0 + 22.5x 1

+ .5 X16 1 X19 x 7 a 18 + 9 ,5 4 27x4

in the construction of the new equation. Thus, we obtain the new equation

x 31 =-"5 + .5x 8 + .5x 1 3 + .5 xl0

+ .5x 1 + .5x 1 6 + .5x 7 + .5x 18

Adjoin a new row corresponding to this additional constraint to the last tableau T 1 2 .

Hence we obtain the following expanded tableau T 13 .

In T 1 3 , since -. 5 is the only negative entry in the constant column, we have to use

x31 as the new nonbasic variable. The pivot element is marked by a circle. After

the pivoting operation, we obtain the tableau T 14 .

f

I
I
I.
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rTableau T 13

c x 8  x 1 3  x10  x 1  x16 x19 x7 x18 x5 x4

y 57.5 23.5 13.5 32.5 22.5 4.5 1 1.5 .5 9 27

YZ 5 . .5 . .5_ -.5 -1 -. -51

x 3 .5 .5 --..5 -1 -. 5 -. 5 1

x4  1

x5  1

x1 1 1 1 1 1

x 7

x 8 1

x9 .5 .5 -. 5 .5 .5 -. 5 .5 -. 5

x 10  _ 1

Xll .5 .5 .5 .5 .5 -. 5 .5 -. 5 -1 1

x 12 1 1 1 1
x13 1

__14_ 1 ____1 1 1

x 14 11_
x 15 2111

x17 1.5 .5 .5 .5 .5 -. 5 .5 -. 5 1

x18 1
x 1 9  1

x_20 2.5 1.5 .5 1.5 .5 .5 -1 -. 5 -. 5 1 1

x21 2 1 1 1 1

x2 2  2 1 1 1 1 1

x23 3 1 1 2 1 2

x24 5 2 1 3 1 1 2

x25 5 2 1 3 3 1 1 2

x26 6.5 2.5 1.5 3.5 2.5 .5 .5 -. 5 1 3

x27 6.5 2.5 1.5 3.5 2.5 .5 .5 .5 1 3

x28 6.5 2.5 1.5 3.5 2.5 .5 1 .5 .5 1 3

x2 9  9 4 2 5 3 1 2 4

12 5 3 7 5 1 2 6
- -. 5 .5 .5 5 .51 .5 -.5
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Tableau T14

c x8 x13 x10 xI x 16 x19 x7 x31 x5 N

Y 58 23 13 32 22 4 1 1 1 9 27X 1

x2  1 1 1 1 -1 -1 1
x 1 1 -1 -1 1
x• 4

x5  1x61 1 1 1 
__ _ _ 1 1

X 7

x8  1
x9  1 1 1 1 -1

x 1 0  ___1 
__

Xll 1 1 1 1 1 -1 -1 1

x12 1 1 1 1

x13

x14 1 1 1 1

x15  2 1 1 1

x- 6 
_

x17 1 1 1 1 1 1 -1 1

x18 1 -1 -1 -1 -1 -1 -1 2
x 19  1

x20 2 2 1 2 1 1 -1 -1 1 1

x21 2 1 1 1 1

x22 2 1 1 1 1 1

x23 3 1 i 2 1 2
x24 5 2 1 3 1 1 2
x 25 5 2 1 3 3 1 1 2

, 26  6 3 2 4 3 1 1 -1 1 3

x 27  7 2 1 3 2 1 1 3

x_8 7 2 1 3 2 - 1 3

x29  9 4 2 5 3 1 2 4xs0 12 5 3 7 5 1 2 6

x3 1
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Now, in the tableau T14, all entries are nonnegative integers. Hence, we obtain an

optimal integral solution

t= X, 2

t2 = x2 2 = 2

t 2=x 22 3

t3 x23 3

t4 = 24 5

t5 = 25 5

t6 = 26 6

t7 = 27 7

t8 = 28 = 7

t9 = 29 = 9

t1 0 =x 3 0 = 12

The minimum of the linear function

10
y I ti

j=1

for all integral feasible solutions is 58.
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Section 6
SWITC HING FUNCTIONS

Let Q denote the set that consists of the two integers 0 and 1. For any given

integer n > 1, consider the Cartesian power

nQ = Qx...x Q

which is the Cartesian product of n copies of Q. Thus, the elements of Qfn are the

2n ordered n-tuples

(xx x2 .... X n)

where the kth coordinate xk is in Q for every k = 1, 2 .... n. Hereafter, 4n

will be called the n-cube and its 2 n elements will be called its points.

By a switching function of n variables, we mean any subset F of the n-cube Qn.

Since Qn has 2n points, there are 2 2 n different switching functions of n variables.

A switching function F of n variables is said to be linearly separable provided that

there exist n + 1 real numbers w 1 , w2 ,..... wn Wn+ 1 such that, for every point

x = (x1 . n) Q n

we have xf F if and only if

+wx< wn
WI X1 + ... + Wnn n= n+ 1

The set W = (w1 .... Wn, wn+1 ) is called a separating system of F; the real

numbers w 1 ,.... wn are called the weights, and the real number wn+ 1 is called
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I
the threshold. By taking the threshold W + 1 as small as possible while the weights

wI .... wn are held fixed, we may assume that, In case F is not empty, there

exists a point x = (xi ..... xn) in F such that

w1 xI +"" + Wnx = Wn+l

Consider the complement

F' = Q- - F

of F. For every point y = (y,, .... yn) in F', we have

wl~ I ' ÷j+ W n Yn >Wn+l1

Let M denote the minimal value of

wl 1y +...+ wnYn -Wnn+1

for all points y = (y, ,.... yn) in F' in case F' is not empty. This positive real

number M Is called the margin of the separating system W (Ref. 15, p. 6). A

separating system W (w1 . Wn, wn + 1) of F is said to be normal provided

that M = 1. Every separating system

W " (wt ....I wn, wn+1)
1P

of F can be normalized by dividing each wi, (I = 1 .... , n + 1), by the margin

M of W. Precisely, the set I
n n+ 1)

with w= wi /M for each I = 1,..., n+ 1 is a normal separating system of F.

Hence, every linearly separable switching function F has a normal separating

system.
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I
iLet W = (w . . wn, wn + 1) be any normal separating system of a given linearly

separable switching function F of n variables. Then, for every point

I x = (xI ..... xn)E Qn

we have

W x + + w x < w it (ifx cF)Wl 1 n Wnn = n +

"W x + +w > wn+I + 1, (ifxtF')Wl 1 + n Xn = nl

By a canonical switching function of n variable, we mean a linearly separable

switching function F of n variable6 which admits a separating system

W = (wI ,....w n, wn+ 1) satisfying

0<w <w < w.<w.<w < < w
= 1= 2= w= = i+ ..=. n

in words, the weights w ,...., wn in W are nonnegative and nondecreasing.

It is well known (Refs. 16 and 17) that every linearly separable switching function F

of n variables can be reduced to a unique canonical switching function by permuting

and complementing a number of the variables.
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Section 7

REGULAR SWITCHING FUNCTIONS

By a weight function of n variables, we mean a homogeneous linear function

w : Rn- R

on the n-dimensional Euclidean space Rn with real values. Precisely, there are

n real numbers wI.... wn such that, for an arbitrary point x = (xI ,..., Xn)

of Rn, we have

= X .. ±
w(x) w1 Xl + + wn n

The real numbers wI ,..., wn are called the coefficients of the weight function w.

A weight function w : R R with coefficients w . wn is said to be

canonical provided

0 < w < w < < w. : w < < w= 1= 2 = = 1= i+1 ="'= n

By means of the canonical weight functions of n variables, we can define a partial

order in the n-cube Qn as follows: Let x = (xI ... Xn) and y = (y ..... Yn)

be any two points of Qn ; then we define

x<y

if and only if

w(x) <- w(y)
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for every canonical weight function w of n variables. This partial order in Qn

is called the canonical partial order (Ref. 17).

The following criterion for < was established in Ref. 17. For arbitrary points

x = (XI, ... Xn) and y = Y of Qn, we have x < y ifandonlyfH I.
n n

j=i j.=i

for every I = 1, 2 ... n.

With respect to the canonical partial order in the n-cube Qn, we define the maximal

points and the minimal points of an arbitrarily given switching function F of n

variables as follows. A point x of F is said to be maximal provided that, for an

arbitrary point y of F, x <= y implies x = y. Similarly, a point x of F is

said to be minimal provided that, for an arbitrary point y of F, y < x implies

y = x.

Using the canonical partial order < in the n-cube Qn , we can define the regular

switching functions. A switching function F of n variables is said to be regular if

and only if it satisfies the following regularity condition:

If x(F and y=x, then yfF.

Obviously, every canonical switching of n variables is regular. In Ref. 18, it was

proved that every regular switching function of n < 5 variables is canonical; in

Ref. 6, an example is given which shows that not every regular switching function of

6 variables is canonical.

I
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Section 8

SYNTHESIS AND MINIMIZATION

Let F be an arbitrary switching function of n variables. The synthesis problem

for the linear separability of F is to determine whether or not F is linearly

separable and to find a separating system (w1 .... wn, Wn+ 1)for F in case F is

linearly separable.

Among various synthesis methods for linear separability introduced in the literature,

the one given by D. G. Willis (Ref. 1) turns out to be the most convenient because it

involves as few linear inequalities as possible. In Ref. 1, the synthesis problem for

the linear separability of arbitrary switching functions of n variables was reduced

to that of the regular switching functions of n variables. Thus, it remains to

determine whether or not a given regular switching function F is linearly separable

and to find a normal canonical separating system (w1 ,.... wn, wn + 1) for F in

case F is linearly separable and hence canonical.

For the convenience of the reader, we shall briefly describe the Willis synthesis

method.

Let F be an arbitrary regular switching function of n variables. We assume that

F is nontrivial, i.e.,

F #r[, F #Qn

where C denotes the empty set. Let L denote the set of all maximal points of F;

and let M denote the set of all minimal points of the complement F' = Qn _ F.

Let

ai = (ail..., an)' (i 1,2...,p)
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!
be the points of L and

be the points of M. Consider the following system of p + q + n linear inequalities: I
n

aflkwk< n+ V (i = 1,2 .... p)

k=1
(51)

n

I j wk wn + 1, + j = 1, 2 q)

k=1

0<w1<w< <w
= I1= w2 !S wn

Then, the Willis synthesis theorem states that the given regular switching function F

is linearly separable if and only if the system (51) of linear inequalities has a solution

(and hence an integral solution).

In our previous reports (Refs. 2-5), various methods were applied to solve the

system (51).

The next problem is naturally the minimization problem, which is to find the most

economical solution of the system (51) in case the given regular switching function F

is linearly separable. In other words, the minimization problem is to find a solution

(wi,..., wn, wn+1)

of the system (51) which makes some cost function 0 (w ,..., w wn +1) minimal.

I
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For the minimization problem, let us first pick up the cost function o . Assume that

the cost of realizing the wi is proportional to the magnitude of wI for each

i = 1, 2 ,.. ., n+ 1 . Under this assumption, the cost function 0 will be a homo-

geneous linear function.

n+1

0 (wI .... w, Wn+ 1)= Yi wi, (52)
i=1

where the coefficients '1... Tn + 1 are nonnegative real numbers. In the

literature (see Ref. 8), two different cost functions have been studied; one of these

is defined by yi =1 for all i = 1, 2 .... , n, n + 1 and the other is given by yi= 1

for i = 1,2,...,n and n+ 1 = 0.

Having fixed the cost function 0 by (52), the minimization problem for a given

regular switching function F is that of finding a normal canonical separating system

that minimizes 0 ; in other words, the minimization problem is the standard linear

program of finding nonnegative real numbers.

wI, w2 ,..., wn, Wn+1

which minimizes the cost function (52) and satisfy the system (51), or equivalently the

following system of m = p + q + n - 1 linear inequalities:

n

I ai wk + Wn+ 1 _> 0, (i = 1, 2 ... p)

k=1

n

I + bjkwk -w > O, (j = 1, 2 ... q) (53)1 (53)n+

k=1

Wk~l Wk • O,(k =1, 2 ... n + 1)
wk+ 1 - wk '
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In an earlier report (Ref. 19), it was proved under the assumption

'n > 0

that this minimization problem for F has optimal solutions in case it is feasible.

In other words, if yn > 0, then every linearly separable regular switching function

F of n variables has a minimal normal canonical separating system.

Various algorithms for computing these minimal normal canonical separating systems

were proposed in our recent reports (Refs. 6 and 7). In particular, if

7i > 0, (i = 1, 2, ... n) (54)

the minimization problem is dually feasible for every nonempty regular switching

function F and hence the dual-simplex method can be very efficiently applied without

the work of finding a feasible solution first (see Ref. 7).
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Section 9

INTEGRAL MINIMIZATION PROBLEM

Throughout the present section, let us assume that the cost function (52) satisfies the

condition (54) and that the given regular switching function F of n variables is

nontrivial, i.e.,

F# 3, F/Qn

For most of the threshold devices realizing linearly separable switching functions, the

numbers

W1 9 w 2  '"'n, W Wn+ 1

are required to be integers. Hence, we want to find nonnegative integers wi,

(i = 1, 2 .... , n + 1), which minimize the cost function (52) and satisfy the system

(53) of linear inequalities. In this integral minimization problem, the coefficients

71y '. .. " 'n+ 1 are assumed to be nonnegative integers. Hence, the value of the cost

function (52) for any integral feasible solution of the problem is also a nonnegative

integer.

The optimal solutions of the minimization problem in the preceding section may be

not integral. For example, let us consider the regular switching function

F = 987643/65V51/2

of nine variables in the notation introduced in our earlier report (Ref. 20). This
9

regular switching function F consists of 58 points of the 9-cube Q , and its
9 - 9

complement F' consists of 29- 58 = 454 points of Q
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!
By the methods developed in Refs. 20 and 21, one can find the set L of all maximal

points of F and the set M of all minimal points of its complement F'. Indeed,

L consists of the following five points of Q9 I
(0, 0, 1, 0, 0, 0, 0, 0, 1)

(0, 0, 0, 0, 1, 0, 0, 1, 0)

(0, 1, 1, 0, 0, 0, 0, 1, .0)

(0, 1, 0, 1, 1, 0, 0, 0, 0)

(1, 1, 1, 0, 1, 0, 0, 0, 0)

and M consists of the following seven points of Q9

(0, 0, 0, 1, 0, 0, 0, 0, 1)

(0, 0, 0, 0, 0, 1, 1, 0, 0)

(1, 1, 0, 0, 0, 0, 0, 0, 1)

(1, 0, 0, 1, 0, 1, 0, 0, 0)

(0, 0, 1, 1, 1, 0, 0, 0, 0)

(1, 1, 1, 0, 0, 1, 0, 0, 0)

(1, 1, 0, 1, 1, 0, 0, 0, 0)

Assume the cost function to be the following linear function

y = w+w 2 +w 3 +W4 + 5 + w 6+W7+W8+w9+w10

Then, one can easily see that our minimization problem reduces to the illustrative

example in section 5 with t =wj for each j = 1, 2 ... , 10. Hence, after

twelve pivoting operations, the dual-simplex method gives an optimal solution
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W, 2
w = 2

w3 3

w3 =5w4=5

w5= 5
5 (55)

w6 =6.5

w = 6.5

w8 =6.5

w9 9

W10 =12

with the minimal total cost

y = 57.5

Hence, this regular switching function F is the one studied by D. G. Willis

(Ref. 8).

Since the minimal total cost is 57. 5 , no integral feasible solution can be an optimal

solution. In fact, D. G. Willis proved that

(2, 2, 3, 5, 5, 6.5, 6.5, 6.5, 9, 12)

is the only minimal normal separating system for F.

Now, let us return to the general case described at the beginning of this section.
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I
Apply the dual-simplex method to our minimization problem. The result will be that

either F is not linearly separable or an optimal solution can be obtained from the

final simplex tableau.

If the optimal solution obtnined by the dual-simplex method consists of integers only,

then we have obtained an integral normal canonical separating system which is I
minimal for all normal canonical separating systems of F. Thus, the problem of

finding minimal integral weights and threshold is solved in this case.

Otherwise, if the optimal solution Is not integral, then we can apply Gomery's method

as described in section 3. It remains for us to verify that the finiteness proof in

section 4 holds for this special case.

In case yn + 1 > 0, the condition (B) at the beginning of section 4 is satisfied since

F is linearly separable and

Ti > 0, (i=1, 2 n.... n+ 1).

Hence, the finiteness proof holds for this case.

On the other hand, let n +1 0. Since F # Qn , it follows that the unit point

(1,1,..., 1) of Qn is in the complement F' and hence

n
W~ <f wi-1

for every feasible solution (w1 ,... Wn+1 ) of (53). Hence, in the finiteness proof, f
we can also prove that the sequence (41) is bounded. Therefore, the finiteness proof

holds also for this case.
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Thus, after a finite number of iterations of the process described in section 3, we

will get a minimal integral solution of our minimization problem.

Let us consider the regular switching function

F = 987643/654/51/2

of nine variables again. We have observed that the dual-simplex method gives us the

optimal solution (55) with cost y = 57. 5 . Since this solution is not integral, we

apply Gomery's process to the resulting system. A, shown in section 5, we obtain

finally an optimal integral solution

w = 2

w2 2

= 33

w = 5w4=5

w = 5

w6 =6

w7 7

w8 = 7

W9 -- 9

w1 0 = 12

with total cost

y = 58

Thus we have obtained a minimal integral normal canonical separating system

(2, 2, 3, 5, 5, 6, 7, 7, 9, 12)
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of the given regular switching function F of nine variables; where

(2, 2, 3, 5, 5, 6, 7, 7, 9)

are the weights and 12 is the threshold.
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